package nloc; import java.util.List; import java.util.ArrayList; import java.util.ListIterator; import java.util.Arrays; import java.lang.Math; public class Nloc { public static final int MIN_TIMEDIFF = 0; private List<Channel> chanlist; private List<Droplet> dropletList; public Nloc (List<Channel> chanlist) { this.chanlist = chanlist; this.dropletList = new ArrayList<Droplet>(); } // public List<List<SequenceTuple>> sanitizeSequences( // List<List<SequenceTuple>> possibleSequences) { // // List<List<SequenceTuple>> tmpSeqs = // new ArrayList<List<SequenceTuple>>(); // // for(List<SequenceTuple> seqTupList: possibleSequences) { // // List<SequenceTuple> tmpStl = new ArrayList<SequenceTuple>(seqTupList); // // for (SequenceTuple seqTup: seqTupList) { // // if (seqTup.getDroplet().getType() != DropletType.PAYLOAD) { // // List<Channel> hPath = seqTup.getPath(); // // // generate sublist for comaparison containing the rest of the // // sequence tuples // List<SequenceTuple> compList = // seqTupList.sublist(seqTupList.indexOf(seqTup), // seqTupList.size() - 1); // // for (SequenceTuple compTuple: compList) { // List<Channel> cPath = compTuple.getPath(); // // if (seqTup.overlaps(compTuple)) { // // check if path is the same // // if so then merge the droplets to one // // if not adjust the min and max position // // if the adjustment is not possible remove the sequence // if (hPath.equals(cPath)) { // SequenceTuple newTup = SequenceTuple.merge(seqTup,compTuple); // tmpStl.remove(seqTup); // tmpStl.remove(compTuple); // tmpStl.add(newTup); // } // end paths are equal // else { // int hMin = seqTup.getMinPos(); // int hMax = seqTup.getMaxPos(); // int cMin = compTuple.getMaxPos(); // int cMax = compTuple.getMaxPos(); // if (hMin == hMax && cMin == cMax) { // tmpStl.clear(); // } else if ((hMax - hMin) < (cMax - cMin)) { // if (hMax < cMax) { // compTuple.setMinPos(hMax + 1); // } else { // compTuple.setMaxPos(hMin - 1); // } // } else if ((hMax - hMin) > (cMax - cMin)) { // if (cMax < hMax) { // seqTup.setMinPos(cMax + 1); // } else { // seqTup.setMaxPos(cMin - 1); // } // } else if ((hMax - hMin) > (cMax - cMin)) { // if (hMin == cMin) { // // } else if (hMin < cMin) { // seqTup.setMaxPos(cMin - 1); // } else { // compTuple.setMaxPos(hMin - 1); // } // } // // } // end paths are not equal // // } // typles overlap // } // end iter restlist // } // payload droplet // } // end iter sequence // if (!tmpStl.isEmpty()) { // tmpSeqs.add(tmpStl); // } // } // end iter possibleSequences // return tmpSeqs; // } //ListIterator<SequenceTuple> seqIter = currentSeq.ListIterator(); //while (seqIter.hasNext()) { // SequenceTuple currentSeqTuple = seqIter.next(); // int minPos = currentSeqTuple.getMinPos(); // int maxPos = currentSeqTuple.getMaxPos(); // Position initialDropletPosition = new Position(pump, minPos); // Droplet currentDroplet = currentSeqTuple.getDroplet(); // // if (position.alreadyOccupied(dropletSequence)) { // // if occupied first try to increase position until max is reached // // if max is also occupied then step back one droplet in list // // and increase its position // // if all fails return null pump indicating that no sequence could // // be found // for (int i = minPos; i <= maxPos; i++) { // } // } else { // currentDroplet.setPosition(initialDropletPosition); // dropletSequence.add(currentDroplet); // } //} public Pump getShortestSequence(String[] modulesToVisit) { Pump pump = this.getPump(); try { List<List<SequenceTuple>> possibleSequences = getPossibleSequences(modulesToVisit); // sort the list of possible sequences according to the sequences length possibleSequences.sort((a,b) -> a.size() - b.size()); List<SequenceTuple> currentSeq = possibleSequences.get(0); int min = 0, max = 0; for (SequenceTuple stl: currentSeq) { int tmp = stl.getMinPos(); if (tmp > max) max = tmp; if (tmp < min) min = tmp; } int span = max - min; pump.setSteps(span); possibleSequences = setTuplePumpoffsetToPumpPosition(possibleSequences, min); List<Droplet> dropletSequence = generateDropletListRecursive(new ArrayList<Droplet>(), currentSeq, currentSeq.get(0).getMinPos()); } catch(NoSuchModuleException nsme) { System.out.println(nsme.getMessage()); } return pump; } public List<List<SequenceTuple>> setTuplePumpoffsetToPumpPosition( List<List<SequenceTuple>> possibleSequences, int minOffset) { for (List<SequenceTuple> stl: possibleSequences) { for (SequenceTuple stup: stl) { int pumpOffsetMin = stup.getMinPos(); stup.setMinPos(pumpOffsetMin + Math.abs(minOffset)); int pumpOffsetMax = stup.getMaxPos(); stup.setMaxPos(pumpOffsetMax + Math.abs(minOffset)); } } return possibleSequences; } private List<Droplet> generateDropletListRecursive( List<Droplet> dropletList, List<SequenceTuple> currentSequence, int currentPos) { if (dropletList.size() == currentSequence.size()) { return dropletList; } else { if (dropletList.isEmpty() || !Position.isOccupied(dropletList, currentPos)) { SequenceTuple tmpTup = currentSequence.get(dropletList.size()); Droplet tmpDr = tmpTup.getDroplet(); tmpDr.setPosition(new Position(this.getPump(), currentPos)); Channel pumpOutlet = tmpTup.getPumpOutlet(); tmpDr.setPumpOutlet(pumpOutlet); dropletList.add(tmpDr); // set current pos to minimum of the following sequence tuple if (dropletList.size() < currentSequence.size()) { currentPos = currentSequence.get(dropletList.size()).getMinPos(); } return generateDropletListRecursive(dropletList, currentSequence, currentPos); } else { SequenceTuple tmpTup = currentSequence.get(dropletList.size()); if (currentPos < tmpTup.getMaxPos()) { currentPos++; return generateDropletListRecursive(dropletList, currentSequence, currentPos); } else { ListIterator<Droplet> revIter = dropletList.listIterator( dropletList.size()); boolean found = false; while (!found && revIter.hasPrevious()) { Droplet tmpDr = revIter.previous(); revIter.remove(); SequenceTuple tmpTup1 = currentSequence.get(dropletList.size() - 1); if (tmpDr.getPosition().getSteps() == currentPos && currentPos < tmpTup1.getMaxPos()) { found = true; } } if (found) { currentPos++; return generateDropletListRecursive(dropletList, currentSequence, currentPos); } else { return dropletList; } } } } } public List<List<SequenceTuple>> getPossibleSequences( String[] modulesToVisit) throws NoSuchModuleException { Droplet payloadDroplet = new Droplet(DropletType.PAYLOAD,"p"); List<List<SequenceTuple>> sequences = new ArrayList<List<SequenceTuple>>(); List<List<Channel>> pathlist = this.getAllPaths(); try { // Create initial list of possilbe sequences List<Channel> moduleChanList = this.getModulesByName(Arrays.asList(modulesToVisit)); List<Channel> payloadPath = this.getDesiredPath(moduleChanList, pathlist); SequenceTuple plt = new SequenceTuple(payloadDroplet,payloadPath,0,0); List<SequenceTuple> s1 = new ArrayList<SequenceTuple>(); s1.add(plt); sequences.add(s1); List<Channel> bifurcationList = this.getBifurcationList(payloadPath); // actually compile list of sequences going through the bifurcations from // "end" to "start" for (int i = bifurcationList.size() - 1; i >= 0; --i) { Channel currentBifurcation = bifurcationList.get(i); List<List<SequenceTuple>> tmpSeqs = new ArrayList<List<SequenceTuple>>(); for (List<SequenceTuple> stl: sequences) { tmpSeqs.addAll( this.getSequencesAtBifurcation(stl, currentBifurcation)); } sequences = tmpSeqs; } } catch (Exception e) { System.out.println( e.getMessage()); } return sequences; } public void addChannel(Channel chan) { chanlist.add(chan); } public Sink getSink() { Sink sink = null; for (Channel chan : chanlist) { if (chan instanceof Sink) sink = (Sink)chan; } return sink; } public Pump getPump() { Pump pump = null; for (Channel chan : chanlist) { if (chan instanceof Pump) pump = (Pump)chan; } return pump; } public boolean simulate() { boolean works = true; while (!allDropletsInSink()) { try { this.moveDroplets(); } catch (CoalescedDropletException e) { works = false; System.out.println(e.getDroplet()); break; } } return works; } public List<Droplet> getDropletList() { return dropletList; } public void moveDroplets() throws CoalescedDropletException { for (Droplet dr : dropletList) { dr.move(); } for (Droplet dr: dropletList) { if (dr.coalesce()) throw new CoalescedDropletException(dr); } } public List<Channel> getBifurcationList(List<Channel> desiredPath) { List<Channel> bfList = new ArrayList<Channel>(); for (Channel ch: desiredPath) { if (ch.isBifurcation()) { bfList.add(ch); } } return bfList; } public static int getPayloadPathlength(List<Channel> path) { int len = 0; for (Channel ch: path) { len += ch.getPSteps(); } return len; } public static int getHeaderPathlength(List<Channel> path) { int len = 0; for (Channel ch: path) { len += ch.getHSteps(); } return len; } public boolean allDropletsInSink() { boolean allInSink = true; for (Droplet dr : dropletList) { allInSink &= dr.isInSink(); } return allInSink; } public List<Channel> getDesiredPath(List<Channel> modules, List<List<Channel>> pathlist) throws NlocStructureException { List<Channel> found = new ArrayList<Channel>(); for (List<Channel> path : pathlist) { List<Channel> modlist = new ArrayList<Channel>(); for (Channel ch: path) { if (ch instanceof Module) { modlist.add(ch); } } if (modules.equals(modlist) && found.isEmpty()) { found = path; } else if (modules.equals(modlist) && !found.isEmpty()) { throw new NlocStructureException("Paths are not unique!"); } } if (found.isEmpty()) { throw new NlocStructureException("No path found that covers all given Modules"); } return found; } public Channel getModuleByName(String name) throws NoSuchModuleException { Channel found = null; for (Channel ch: chanlist) { if (ch.getName().equals(name)) { found = ch; } } if (found == null) throw new NoSuchModuleException(name); return found; } public List<Channel> getModulesByName(List<String> names) throws NoSuchModuleException { List<Channel> ret = new ArrayList<Channel>(); for (String name : names) { Channel ch = getModuleByName(name); if (name != null) { ret.add(ch); } } return ret; } public List<List<Channel>> getAllPathsFromTo(Channel from, Channel to) { List<List<Channel>> pl = new ArrayList<List<Channel>>(); List<Channel> path = new ArrayList<Channel>(); getAllPathsRecursive(from, to, path, pl); return pl; } public List<List<Channel>> getAllPaths() { List<List<Channel>> pl = new ArrayList<List<Channel>>(); List<Channel> path = new ArrayList<Channel>(); getAllPathsRecursive(this.getPump(), this.getSink(), path, pl); return pl; } private void getAllPathsRecursive(Channel chan, Channel end, List<Channel> path, List<List<Channel>> pathlist) { path.add(chan); if (chan.equals(end)) { pathlist.add(path); } else { for (Channel ch : chan.getChildrenList()) { getAllPathsRecursive(ch, end, new ArrayList<Channel>(path), pathlist); } } } public List<List<SequenceTuple>> getSequencesAtBifurcation( List<SequenceTuple> seqTup, Channel currentBifurcation) { List<List<SequenceTuple>> seqTupList = new ArrayList<List<SequenceTuple>>(); SequenceTuple currentSeqTup = seqTup.get(0); getSequencesAtBifurcationRecursive(seqTup, currentSeqTup, seqTupList, currentBifurcation); return seqTupList; } private void getSequencesAtBifurcationRecursive( List<SequenceTuple> seqTupList, SequenceTuple currentSeqTup, List<List<SequenceTuple>> possibleSequences, Channel currentBifurcation) { // check if header droplet is needed List<Channel> dropletPath = currentSeqTup.getPath(); Channel bifurcSuccessor = dropletPath.get(dropletPath.indexOf(currentBifurcation) + 1); // bifurcation priority: prio = 0 if default channel; prio >= 1 if not // default and threrfore header droplet needed int prio = currentBifurcation.getChildrenList().indexOf(bifurcSuccessor); if (currentSeqTup.equals(seqTupList.get(seqTupList.size() - 1))) { // if at last sequence tuple add another header droplet tuple if needed // and add the list of sequence tuples to the possible sequences list if (dropletPath.contains(currentBifurcation) && prio > 0) { System.out.println("At last sequence tuple and adding header droplet(s) to: " + currentSeqTup.getDroplet().getName() + ": " + currentSeqTup.getMinPos()); System.out.println(""); // we need header droplet // cirst check all possible paths of header droplets Channel defaultChan = currentBifurcation.getChildrenList().get(0); List<List<Channel>> pathList = this.getAllPathsFromTo(dropletPath.get(0), defaultChan); for (List<Channel> path: pathList) { List<SequenceTuple> tmp = new ArrayList<SequenceTuple>(seqTupList); SequenceTuple tmpTuple = new SequenceTuple(new Droplet(DropletType.HEADER,"h"),path); tmp.add(tmpTuple); // calculate and set pump offsets int minPos = currentSeqTup.getMinPos(); int maxPos = currentSeqTup.getMaxPos(); List<Channel> pathToCurrentBifurcation = dropletPath.subList(0,dropletPath.indexOf(currentBifurcation) + 1); int pathLenCurrDroplet = 0; if (currentSeqTup.getDroplet().getType() == DropletType.HEADER) { pathLenCurrDroplet = getHeaderPathlength(pathToCurrentBifurcation); } else { pathLenCurrDroplet = getPayloadPathlength(pathToCurrentBifurcation); } int maxPathLenNewDroplet = getHeaderPathlength(path); int minPathLenNewDroplet = maxPathLenNewDroplet - defaultChan.getHSteps() + 1; //System.out.println("minPos: " + minPos + " pathLenCurrDroplet: " + // pathLenCurrDroplet + " minPathLenNewDroplet: " + minPathLenNewDroplet); int newTupleMinPos = minPos - (pathLenCurrDroplet - minPathLenNewDroplet); int newTupleMaxPos = maxPos - (pathLenCurrDroplet - maxPathLenNewDroplet); tmpTuple.setMinPos(newTupleMinPos); tmpTuple.setMaxPos(newTupleMaxPos); possibleSequences.add(tmp); } } else { System.out.println("At last sequence tuple and NOT adding header droplet(s) to: " + currentSeqTup.getDroplet().getName() + ": " + currentSeqTup.getMinPos()); System.out.println(""); possibleSequences.add(seqTupList); } } else { if (dropletPath.contains(currentBifurcation) && prio > 0) { System.out.println("NOT at last sequence tuple and "); System.out.println("Adding header droplet(s) to: " + currentSeqTup.getDroplet().getName() + ": " + currentSeqTup.getMinPos()); System.out.println(""); // we need header droplet // cirst check all possible paths of header droplets Channel defaultChan = currentBifurcation.getChildrenList().get(0); List<List<Channel>> pathList = this.getAllPathsFromTo(dropletPath.get(0), defaultChan); for (List<Channel> path: pathList) { List<SequenceTuple> tmp = new ArrayList<SequenceTuple>(seqTupList); SequenceTuple tmpTuple = new SequenceTuple(new Droplet(DropletType.HEADER,"h"),path); tmp.add(seqTupList.indexOf(currentSeqTup) + 1, tmpTuple); // calculate and set pump offsets int minPos = currentSeqTup.getMinPos(); int maxPos = currentSeqTup.getMaxPos(); List<Channel> pathToCurrentBifurcation = dropletPath.subList(0,dropletPath.indexOf(currentBifurcation) + 1); int pathLenCurrDroplet = 0; if (currentSeqTup.getDroplet().getType() == DropletType.HEADER) { pathLenCurrDroplet = getHeaderPathlength(pathToCurrentBifurcation); } else { pathLenCurrDroplet = getPayloadPathlength(pathToCurrentBifurcation); } int maxPathLenNewDroplet = getHeaderPathlength(path); int minPathLenNewDroplet = maxPathLenNewDroplet - defaultChan.getHSteps() + 1; //System.out.println("minPos: " + minPos + " pathLenCurrDroplet: " + // pathLenCurrDroplet + " minPathLenNewDroplet: " + minPathLenNewDroplet); int newTupleMinPos = minPos - (pathLenCurrDroplet - minPathLenNewDroplet); int newTupleMaxPos = maxPos - (pathLenCurrDroplet - maxPathLenNewDroplet); tmpTuple.setMinPos(newTupleMinPos); tmpTuple.setMaxPos(newTupleMaxPos); getSequencesAtBifurcationRecursive(tmp, seqTupList.get(seqTupList.indexOf(currentSeqTup) + 1), possibleSequences, currentBifurcation); } } else { System.out.println("NOT at last sequence tuple and NOT adding header droplets to: " + currentSeqTup.getDroplet().getName() + ": " + currentSeqTup.getMinPos()); System.out.println(""); getSequencesAtBifurcationRecursive(seqTupList, seqTupList.get(seqTupList.indexOf(currentSeqTup) + 1), possibleSequences, currentBifurcation); } } } }