diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..9650babce0ab7b22f287107b5352cf4c8bd8a530
--- /dev/null
+++ b/README.md
@@ -0,0 +1,113 @@
+# AURA Steering: Program Scheduler
+
+AURA Steering is the scheduling module, where the actual program schedule of
+the whole station is stored as well as all infos regarding single shows and
+emissions.
+
+It also acts as an OpenID Connect provider for `dashboard` and `tank`.
+
+## Installation
+
+Follow the instructions to deploy AURA Web from the [Docker Compose
+Installation](https://docs.aura.radio/en/latest/administration/install-docker-compose.html)
+
+If you just want to try `steering` locally, use the provided compose setup and
+be sure to add:
+
+```dotenv
+AURA_PROTO=http
+```
+
+to  the `.env` file.
+
+A better development setup for `steering`, that pulls the docker images for
+`dashboard` and `tank` from Docker Hub, builds the image for `steering` locally
+and exposes the ports can be achieved with `docker-compose.steering.yml` by
+adding this lines to the end of the `.env` file:
+
+```dotenv
+STEERING_VERSION=latest
+COMPOSE_FILE=docker-compose.yml:docker-compose.steering.yml
+```
+
+## Testing
+
+If you want to run the test suite, you can run `pytest` in the container:
+
+```shell
+$ docker compose run steering pytest
+```
+
+## `venv`
+
+**Warning:** This is not the recommended way: it uses SQLite instead of
+Postgres and will be deprecated soon
+
+If you really don't want to use Docker, you can install `steering` using a
+virtual environment.
+
+Create and activate a virtual environment:
+
+```shell
+$ python3.9 -m venv venv
+$ source venv/bin/activate
+```
+
+Install the required dependencies:
+
+```shell
+(venv) $ pip install --upgrade pip
+(venv) $ pip install -r requirements.txt
+```
+
+Then, you can set up the database:
+
+```shell
+(venv) $ ./manage.py migrate
+```
+
+And load the fixtures:
+
+```shell
+(venv) $ ./manage.py loaddata fixtures/*/*.json
+```
+
+Or, if you prefer, you can just create a superuser after setting up the
+database:
+
+```shell
+(venv) $ manage.py createsuperuser
+```
+
+The only required fixtures are the recurrence rules, these are needed to create
+schedules:
+
+```shell
+$ docker compose run django ./manage.py loaddata fixtures/program/rrule.json
+```
+
+Then, you can create a RSA Key and the clients for `dashboard` and `tank`:
+
+```shell
+(venv) $ ./manage.py creatersakey
+(venv) $ ./manage.py create_oidc_client dashboard public -r "id_token token" -u http://localhost:8080/oidc_callback.html -u http://localhost:8080/oidc_callback_silentRenew.html -p http://localhost:8080/
+(venv) $ ./manage.py create_oidc_client tank confidential -r "code" -u http://localhost:8040/auth/oidc/callback
+```
+
+Finally, you can start the development server:
+
+```shell
+(venv) $ ./manage.py runserver
+```
+
+## Data Model
+
+A visualization of the data model can be generated using the [Graph Models
+Django
+Extensions](https://django-extensions.readthedocs.io/en/latest/graph_models.html)
+
+The following command will generate an image out of the models:
+
+```shell
+(venv) $ docker compose steering run ./manage.py graph_models --pydot -g -o steering_data_model.png program profile
+```
diff --git a/README.rst b/README.rst
deleted file mode 100644
index bfe078ccd4dbbda701e9dee0dcd283e51f3bb960..0000000000000000000000000000000000000000
--- a/README.rst
+++ /dev/null
@@ -1,97 +0,0 @@
-================================
-AURA Steering: Program Scheduler
-================================
-
-AURA Steering is the scheduling module, where the actual program schedule of
-the whole station is stored as well as all infos regarding single shows and
-emissions.
-
-It also acts as an OpenID Connect provider for ``dashboard`` and ``tank``.
-
-Installation
-------------
-
-Follow the instructions to deploy AURA Web from the `Docker Compose
-Installation`_.
-
-If you just want to try ``steering`` locally, use the provided compose setup
-and be sure to put::
-
-    AURA_PROTO=http
-
-in the ``.env`` file.
-
-A better development setup for ``steering``, that pulls the docker images for
-``dashboard`` and ``tank`` from Docker Hub, builds the image for ``steering``
-locally and exposes the ports can be achieved with the
-``docker-compose.steering.yml`` by adding this lines to the end of the ``.env``
-file::
-
-    STEERING_VERSION=latest
-    COMPOSE_FILE=docker-compose.yml:docker-compose.steering.yml
-
-Testing
--------
-
-If you want to run the test suite, you can run ``pytest`` in the container::
-
-    $ docker compose run steering pytest
-
-venv
-----
-
-.. warning::  This is not the recommended way: it uses SQLite instead of Postgres and will be deprecated soon
-
-If you really don't want to use Docker, you can install ``steering`` using a
-virtual environment.
-
-Create and activate a virtual environment::
-
-    $ python3.9 -m venv venv
-    $ source venv/bin/activate
-
-Install the required dependencies::
-
-    (venv) $ pip install --upgrade pip
-    (venv) $ pip install -r requirements.txt
-
-Then, you can setup the database::
-
-    (venv) $ ./manage.py migrate
-
-And load the fixtures::
-
-    (venv) $ ./manage.py loaddata fixtures/*/*.json
-
-Or, if you prefer, you can just create a super user after setting up the
-database::
-
-    (venv) $ manage.py createsuperuser
-
-The only required fixtures are the recurrence rules, these are needed to create
-schedules::
-
-    $ docker compose run django ./manage.py loaddata fixtures/program/rrule.json
-
-Then, you can create a RSA Key and the clients for ``dashboard`` and ``tank``::
-
-    (venv) $ ./manage.py creatersakey
-    (venv) $ ./manage.py create_oidc_client dashboard public -r "id_token token" -u http://localhost:8080/oidc_callback.html -u http://localhost:8080/oidc_callback_silentRenew.html -p http://localhost:8080/
-    (venv) $ ./manage.py create_oidc_client tank confidential -r "code" -u http://localhost:8040/auth/oidc/callback
-
-Finally, you can start the development server::
-
-    (venv) $ ./manage.py runserver
-
-Data Model
-----------
-
-A visualization of the data model can be generated using the `Graph Models
-Django Extensions`_
-
-The following command will generate an image out of the models::
-
-    (venv) $ docker compose steering run ./manage.py graph_models --pydot -g -o steering_data_model.png program profile
-
-.. _Docker Compose Installation: https://docs.aura.radio/en/latest/administration/install-docker-compose.html
-.. _Graph Models Django Extensions: https://django-extensions.readthedocs.io/en/latest/graph_models.html